Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers
نویسندگان
چکیده
We have investigated the response of the acoustoelectric current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or the gate voltage Vg of the point contact is varied. A pronounced 1.1MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously, though at different current values, as if they were superposed on each other. Their presence could result from two independent quantization mechanisms for the acoustoelectric current. We point out that short potential barriers determining the properties of our nominally long constrictions could lead to an additional quantization mechanism, independent from those described in the standard model of ’moving quantum dots’.
منابع مشابه
Quantum wires and dots driven by intense surface acoustic waves and the quantum attenuation of sound in an electron plasma
We develop a quantum theory of the nonlinear interaction between intense surface acoustic waves and electrons of a quantum well in the regime of moving quantum wires and dots. The quantum nonlinear interaction principally differs from the classical one. In a system of electron wires driven by an acoustic wave the sound attenuation strongly decreases with increasing the sound intensity. However,...
متن کاملInjection of a single electron from static to moving quantum dots.
We study the injection mechanism of a single electron from a static quantum dot into a moving quantum dot. The moving quantum dots are created with surface acoustic waves (SAWs) in a long depleted channel. We demonstrate that the injection process is characterized by an activation law with a threshold that depends on the SAW amplitude and on the dot-channel potential gradient. By sufficiently i...
متن کاملQuantum current modeling in nano-transistors with a quantum dot
Carbon quantum dots (CQDs) serve as a new class of ‘zero dimensional’ nanomaterial’s in thecarbon class with sizes below 10 nm. As light emitting nanocrystals, QDs are assembled from semiconductormaterials, from the elements in the periodic groups of II-VI, III-V or IV-VI, mainly thanks to impacts of quantum confinement QDs have unique optical properties such as brighter, highly pho...
متن کاملSelf-induced acoustic transparency in semiconductor quantum films.
We develop a quantum theory of the nonlinear interaction between intense surface acoustic waves and electrons in a quantum well in the regime of moving quantum wires and dots. In the quantum nonlinear regime, the sound attenuation exhibits quantum oscillations and dramatically decreases with increasing quantization. In the case of dynamically created electron dots formed by two acoustic waves, ...
متن کاملSurface-acoustic-wave-induced transport in a double quantum dot.
We report on nonadiabatic transport through a double quantum dot under irradiation of surface acoustic waves generated on chip. At low excitation powers, absorption and emission of single and multiple phonons are observed. At higher power, sequential phonon assisted tunneling processes excite the double dot in a highly nonequilibrium state. The present system is attractive for studying electron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006